
smeb - A simple WebM streaming server
Stephan Soller, Computer Science and Media

Stuttgart Media University
ss312@hdm-stuttgart.de

Video live streaming has become common place in the
Internet. Usually one source stream (e.g. of a confer-
ence) is broadcasted to many viewers. This paper de-
scribes the design and implementation of an WebM live
streaming server. How it relates to other existing
streaming servers and what design decisions have been
taken. The way how WebM live streams are broadcasted
is explained in more detail as well as are some refine-
ments required to support browser clients.

smeb is a simple WebM streaming server. It receives a
video stream from one source (the producer) and allows
multiple viewers to watch this stream. In short the video
stream received from the producer is copied to all view-
ers of that stream.

This is similar to Icecast v2.4 [1], stream-m [2] or ff-
serve [3] but with a different feature set:

• smeb can create streams on the fly as soon as a
someone sends data. When the producer discon-
nects a stream is automatically deleted after a
timeout (stream-m and ffserve need preconfig-
ured streams).

• smeb offers a very simple machine-friendly JSON
interface to query all available streams and their
status (not machine-friendly with ffserve).

• The interface to send video streams to smeb is
very simple (a HTTP POST request). It doesn't re-
quire any additional protocols (Icecast and ffserve
require custom protocols).

So smeb covers a feature space not quite covered by
any of the above streaming servers. It doesn't require
preconfigured streams (that eliminates stream-m and ff-
serve) and it's easy to send video streams to smeb (close
to undocumented for Icecast v2.4 when smeb was con-
ceived). It is not designed to be "the" streaming server
but rather a building block for live streaming systems

that needs a minimum of configuration and mainte-
nance.

This chapter shortly describes the core concepts of
smeb.

The basic principle of smeb is WebM live streaming
based on the Matroska container as explained in detail
in the next chapter. New viewers only need to receive
a short header when connecting to a stream. After that
the video stream from the producer can be more or less
copied to all connected viewers. For clients this is a nor-
mal not seekable video (the user can't use the timeline
to jump ahead and back). Thanks to this all browsers and
media players that support WebM playback can be used
to watch such a live stream (Chrome, Firefox, Opera,
VLC, ffplay, etc.).

The second defining design choice of smeb is to use
HTTP as transport protocol. This protocol is native to
browsers and supported by many media players. HTTP
usually works even behind large cooperate firewalls.
Thus allowing employees there to watch the video
streams. HTTP is also quite a bit simpler and easier to
implement than alternative protocol stacks for video
streaming.

With HTTP the server interface remains quite simple:

• The producer sends a WebM video stream to the
server via a POST request.

• Viewers can watch the video with a GET request to
the same resource.

• A GET request to index.json returns a list of all cur-
rently available streams and their status.

In case the producer dies unexpectedly the clients are
kept connected for some time. When the producer re-
sumes sending the clients resume playing without any
user interaction. To them it's just a long network stall. So
there is no need for users to refresh the browser when
the stream is interrupted. Older events have shown that
when the viewers are disconnected on stream interrup-

Abstract

Introduction1.

Basic design decisions2.

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



tions up to halve of them do not reconnect to continue
watching.

The server can also handle multiple streams at the
same time. In case multiple events take place at the same
time, one event needs multiple streams (e.g. one for each
room) or to implement simple quality switching (send
each quality as an independent stream).

smeb does not do any video encoding. It merely dis-
tributes the received data to all connected viewers. This
keeps smeb itself much simpler and almost configura-
tion free. Any complex encoding as well as encoding
performance optimization are done outside of smeb. Es-
tablished tools like ffmpeg offer many options for that.
Putting such an encoder into smeb would require to
replicate all these options.

Implementation wise smeb is build with a poll()

based event loop. To exclude any 3rd party error
sources, get absolute control over the mainloop and all
error handling smeb was written in C, directly using the
poll() system call.

There are many approaches to video live streaming. This
chapter provides some insight into the approach taken
by smeb [4].

A video file stores several audio and video tracks. A
video player then reads the file and plays the audio and
video tracks synchronously. These tracks are usually
stored in an interleaved fashion and each data block (e.g.
video frame) of a track is accompanied by a timestamp.
The timestamps specify at what moment a video frame
should be shown or an audio block should be played.

Figure 1: Data blocks of an video (V) and audio (A) stream. Stored in
one file by interleaving. The small numbers are the timestamps of
the blocks (in milliseconds).

…V
0

A
0

A
10

A
20

A
30

V
33

A
40

A
50

How this interleaving and timestamping is done is de-
fined by the container format. The container format used
for WebM videos is a simplified subset of the Matroska
container format. All of the techniques described here
are actually based on the Matroska specification but also
apply to WebM.

WebM stores data as a tree of elements, each element
containing some basic data (integer, string, etc.) or child

Figure 2: XML representation of a simplified element tree of an
WebM video.

<EBML>...</EBML> // EBML and Doctype information
<Segment>

<Info>...</Info> // Video and Audio track format
and information

<Cluster>...</Cluster> // Video and audio data
for about 1 sec.

<Cluster>...</Cluster> // Video and audio data
for about 1 sec.

... // Many more Cluster elements
</Segment>

elements. This structure is very similar to XML and in
fact has been extracted into it's own data format: EBML
[5]. Matroska defines EBML elements and their meaning
and WebM restricts which of these elements can be used
in WebM files. This is similar to how SVG defines XML el-
ements and their meanings and SVG Tiny restricts what
elements can be used on handheld devices.

Figure 2 shows an simplified element tree of a WebM
video. The XML representation is only used to clarify the
structure. EBML encodes elements with an integer ele-
ment ID, an integer specifying the size of the payload fol-
lowed by the payload data itself.

The basic idea behind smebs live streaming is to split
an incoming WebM video into a "header" part and clus-
ter elements. The header part contains the EBML ele-
ment, the start of the Segment element and the Info ele-
ment. And with them all the information about the video
a browser or media player needs to know (how many
tracks are in there, what video codec, what audio codec,
etc.). The Cluster elements then each contain the data of
all tracks for about one second.

Figure 3: XML representation of the header part and two separate
cluster elements

<EBML>...</EBML>
<Segment>

<Info>...</Info>

<Cluster>...</Cluster>

<Cluster>...</Cluster>

When a producer begins to sends a WebM stream
smeb first extracts the header part (everything up to and
including the Info element) and stores it. Then when a
viewer connects to the same WebM stream smeb first
sends the header part. Every Cluster element then re-
ceived from the producer is broadcasted to every viewer
that already received the header part. If no one watches
a stream all Cluster elements smeb receives are discard-
ed. See figure 4.

WebM live streaming3.

2



Figure 4: Diagram of how smeb handles new viewers. H is the header part, C are individual Cluster elements.

H C C C C C C

H C C C C CC

C C C

C

C

H C C C C C C

Source Stream

Client A
connected

Client B
connected

An important detail of this scheme is that viewing
clients never see the end of the Segment element. Since
smeb processes live streams we don't know how long the
entire video will be. It's unknown how many Cluster el-
ements will be in the Segment element or how large all
these Cluster elements will be. Usually the ID and size en-
coding of EBML elements would require us to specify an
exact size of the Segment element. But:

“ There is only one reserved word for Element Size en-
coding, which is an Element Size encoded to all 1's. Such
a coding indicates that the size of the Element is un-
known, which is a special case that we believe will be
useful for live streaming purposes. However, avoid using
this reserved word unnecessarily, because it makes pars-
ing slower and more difficult to implement.” [5]

This exception makes it possible to set the size of the
Segment element to "unknown". Allowing smeb to send
out as many Cluster elements as it receives. The clients
continue to play the video until the data stream ends
(the connection is closed). This small detail of the Ma-
troska/EBML specification is an absolutely necessary un-
derpinning of smebs live streaming approach. Contain-
er formats that lack such a way to specify an "unknown
size" (e.g. MP4) can't be streamed with this approach.

The basic approach could be quickly verified to work
with the ffmpeg sample video player ffplay. Browsers,
however, require some additional constraints to prevent
them from simply disconnecting or playing only partial
streams (only audio and no video for example). This
chapter roughly describes the quirks discovered by man-
ual testing and reverse engineering.

Self contained first Cluster
The first Cluster element received by browsers must be
self contained. It must not reference data the browser
didn't get because it just connected and missed any pre-
vious data. Otherwise browsers simply disconnect im-
mediately or only play the audio track and display no
video.

This constraint is broken by the VP8 video codec. As
many modern video codecs it mainly encodes differ-
ences from one frame to the next (or prediction errors
of these differences to be more precise). To display one
frame the video player has to know the previous frame.
This "has to know" chain is broken by occasional
"keyframes". They contain a complete frame and don't
depend on any previous frames. This makes the video
more error resilient and allows to easily resume play-
back from each of these keyframes.

When a new viewer connects to a stream the first
frame in the first cluster has to be such a keyframe.
Otherwise the first frame would require knowledge of
the previous frames the viewer never received. Unfor-
tunately testing with ffmpeg generated WebM streams
showed most Cluster elements don't start with a
keyframe. While ffplay ignores frames it can't decode
browsers mostly disconnect when they encounter such
frames.

To solve this problem smeb builds a special "intro"
cluster for each stream. This intro cluster starts with the
last encountered keyframe and contains all video and
audio data since then. As soon as a new keyframe is en-
countered the intro cluster is reset and refilled with new
data. Now when viewers connect to a stream smeb sends
the header part, the current intro cluster and then starts
to pass unmodified Cluster elements to that client.

Further refinements4.

3



Timestamp patching
One design goal of smeb was to keep clients connected
even when the producer stream breaks down. As soon
as the producer resumes sending new data the clients
should automatically resume playback.

smeb achieves this by simply stopping to send Cluster
elements when the producer breaks down. But the
watching clients are not disconnected, they simply re-
ceive no more data. When a new producer connects and
sends more data smeb simply continues to broadcast
the new Cluster elements to all watchers. To watching
clients this only looks like a long network stall.

When implementing this approach a problem became
apparent: Each block of video and audio data in a Cluster
element contains a timestamp. This is necessary so that
video players can synchronize the audio and video
tracks. These timestamps usually start at zero and have
to increase as time goes by (see figure 1).

For example when a producer died the highest time-
stamp reached was 2400000 ms (40 minutes since stream
start). Shortly after that a new producer connects and
starts sending a WebM stream. Unfortunately this new
producer restarts the timestamps at 0. So watching
clients connected to smeb would observed normal Clus-
ter elements with timestamps up to 2400000, then a long
network stall and after that new Cluster elements with
timestamps suddenly restarting at 0.

Some media players can cope with such sudden time-
stamp jumps. Browsers do not and simply disconnect on
these occasions. To solve this problem smeb inspects and
patches the timestamps of the received WebM streams.
The patched timestamps are continuously increasing so
clients don't see a sudden jump in the timestamps. Even
when a producer dies and a new one sends timestamps
starting with 0 again.

While a first prototype of smeb is finished and opera-
tional there is still much to be done:

Basic HTTP authentication should be required to send
a stream. So only users with the correct password can
actually broadcast streams.

Improve handling of clients that are to far behind. Ei-
ther because of a slow connection or because they don't
consume data (e.g. "hanging" browsers). Right now
they're disconnected from the server if they lag to far

behind. But the might be ways to bring these clients up
to speed, e.g. by only sending halve the video frames un-
til the client catches up.

Currently smeb doesn't support producers that send
their WebM stream via HTTP chunked encoding. Imple-
menting that would allow to receive streams from en-
coding software that doesn't have options to disable
chunked encoding.

smeb doesn't respect the HTTP version a watching
client requests. smeb always answers watching clients
with HTTP/1.1 chunked encoding. This causes problems
with old HTTP proxy servers that only understand
HTTP/1.0. This could be solved by using a simple HTTP/
1.0 connection without chunked encoding for those
clients.

Creating a live JPEG preview of the last keyframe
would allow proper previews of currently live streams
on websites.

Under some circumstances randomly received data
can crash the semb server. This happens for example
when automated attacks hit the server. This can cause
smeb to receive malicious PHP code that it doesn't un-
derstand but tries to parse as a WebM stream. As the
code is currently build for experimentation it isn't hard-
ened in the way production ready code would be.

smeb also served as test bed to explore the limits of
implementing goto based state machines in C. Because of
that large parts of the code are in need of proper refac-
toring.

Since smeb is a prototype it also suffers occasional
memory leaks. When broadcasting several streams for
half a day these can add up to several hundred
megabytes of lost memory. This should be solved by
proper management of received and send buffers.

Currently smeb is a fully functioning prototype. It con-
firmed the feasibility of the basic Matroska live stream-
ing approach with browsers as clients. smeb also allows
resuming of died streams without disconnecting all
watching clients.

Despite being fully functional several important fea-
tures (e.g. HTTP basic authentication) are still missing.
Also the code quality and robustness is just that of a pro-
totype. So smeb is not yet production ready.

Further work5.
Conclusion6.

4



[1] Icecast.org
http://www.icecast.org/
Retrieved 2014-07-14

[2] stream.m a WebM live streaming server
http://code.google.com/p/stream-m/
Retrieved 2014-07-14

[3] ffserver Documentation
https://www.ffmpeg.org/ffserver.html
Retrieved 2014-07-14

[4] Matroska Streaming
http://matroska.org/technical/streaming/in-
dex.html
Retrieved 2014-07-14

[5] EBML principle (Extensible Binary Meta Lan-
guage)
http://matroska.org/technical/specs/in-
dex.html#EBML_ex
Retrieved 2014-07-14

References7.

5

http://www.icecast.org/
http://code.google.com/p/stream-m/
https://www.ffmpeg.org/ffserver.html
http://matroska.org/technical/streaming/index.html
http://matroska.org/technical/specs/index.html#EBML_ex

	smeb - A simple WebM streaming server
	Abstract
	Introduction
	Basic design decisions
	WebM live streaming
	Further refinements
	Self contained first Cluster
	Timestamp patching

	Further work
	Conclusion
	References


